| |||||
|
Принципы квантовой механики Основными принципами квантовой механика являются принцип неопределенности В. Гейзенберга и принцип дополнительности Н. Бора.
Согласно принципу неопределенности невозможно одновременно точно определить местоположение частицы и ее импульс. Чем точнее определяется местоположение, или координата, частицы, тем более неопределенным становится ее импульс. И наоборот, чем точнее определен импульс, тем более неопределенным остается ее местоположение. Проиллюстрировать этот принцип можно при помощи опыта Т. Юнга по интерференции. Этот опыт показывает, что при прохождении света через систему двух близкорасположенных малых отверстий в непрозрачном экране он ведет себя не как прямолинейно распространяющиеся частицы, а как взаимодействующие волны, в результате чего на поверхности, расположенной за экраном, возникает интерференционная картина в виде чередующихся светлых и темных полос. Если же оставить поочередно открытым только одно отверстие, то интерференционная картина распределения фотонов исчезает. Проанализировать результаты этого опыта можно при помощи следующего мысленного эксперимента. Для того чтобы определить местоположение электрона, его надо осветить, т. е. направить на него фотон. В случае столкновения двух элементарных частиц мы сможем точно рассчитать координаты электрона (определяется место, где он был в момент столкновения). Однако вследствие столкновения электрон неизбежно изменит свою траекторию, так как в результате столкновения ему будет передан импульс от фотона. Поэтому если мы точно определим координату электрона, то одновременно мы лишимся знания о траектории его последующего движения. Мысленный эксперимент по столкновению электрона и фотона аналогичен закрытию одного из отверстий в опыте Юнга: столкновение с фотоном аналогично закрытию одного из отверстий в экране: в случае этого закрытия разрушается интерференционная картина или (что то же самое) траектория электрона становится неопределенной. Значение принципа неопределенности. Соотношение неопределенности означает, что принципы и законы классической динамики Ньютона не могут использоваться для описания процессов с участием микрообъектов. По существу этот принцип означает отказ от детерминированности и признание принципиальной роли случайности в процессах с участием микрообъектов. В классическом описании понятие случайности используется для описания поведения элементов статистических ансамблей и является лишь сознательной жертвой полноты описания во имя упрощения решения задачи. В микромире же точный прогноз поведения объектов, дающий значения его традиционных для классического описания параметров, вообще невозможен. По этому поводу до сих пор ведутся оживленные дискуссии: приверженцы классического детерминизма, не отрицая возможности использования уравнений квантовой механики для практических расчетов, видят в учитываемой ими случайности результат нашего неполного понимания законов, управляющих пока непредсказуемым для нас поведением микрообъектов. Приверженцем такого подхода был А. Эйнштейн. Являясь основоположником современного естествознания, отважившимся на пересмотр казавшихся незыблемыми позиций классического подхода, он не счел возможным отказаться от принципа детерминизма в естествознании. Позиция А. Эйнштейна и его сторонников по данному вопросу может быть сформулирована в хорошо известном и весьма образном высказывании о том, что очень трудно поверить в существование Бога, каждый раз бросающего кости для принятия решения о поведении микрообъектов. Однако до настоящего времени не обнаружено никаких экспериментальных фактов, которые указывают на существование внутренних механизмов, управляющих «случайным» поведением микрообъектов. Следует подчеркнуть, что принцип неопределенности не связан с какими-то недостатками в конструировании измерительных приборов. Принципиально невозможно создать прибор, который одинаково точно измерил бы координату и импульс микрочастицы. Принцип неопределенности проявляется корпускулярно-волновым дуализмом природы. Из принципа неопределенности также следует, что в квантовой механике отвергается постулируемая в классическом естествознании принципиальная возможность выполнения измерений и наблюдений объектов и происходящих с ними процессов, не влияющих на эволюцию изучаемой системы. Принцип неопределенности является частным случаем более общего по отношению к нему принципа дополнительности. Из принципа дополнительности следует, что если в каком-либо эксперименте мы можем наблюдать одну сторону физического явления, то одновременно мы лишены возможности наблюдать дополнительную к первой сторону явления. Дополнительными свойствами, которые проявляются только в разных опытах, проведенных при взаимно исключающих условиях, могут быть положение и импульс частицы, волновой и корпускулярный характер вещества или излучения. Важное значение в квантовой механике имеет принцип суперпозиции. Принцип суперпозиции (принцип наложения) — это допущение, согласно которому результирующий эффект представляет сумму эффектов, вызываемых каждым воздействующим явлением в отдельности. Одним из простейших примеров является правило параллелограмма, в соответствии с которым складываются две силы, действующие на тело. В микромире принцип суперпозиции — фундаментальный принцип, который наряду с принципом неопределенности составляет основу математического аппарата квантовой механики. В релятивистской квантовой механике, предполагающей взаимное превращение элементарных частиц, принцип суперпозиции должен быть дополнен принципом суперотбора. Например, при аннигиляции электрона и позитрона принцип суперпозиции дополняется принципом сохранения электрического заряда — до и после превращения сумма зарядов частиц должна быть постоянной. Поскольку заряды электрона и позитрона равны и взаимно противоположны, должна возникнуть незаряженная частица, каковой и является рождающийся в этом процессе аннигиляции фотон. Если Вам необходимо написание реферата, курсовой или дипломной работы по данной теме, Вы можете
Позвонить: Ещё из раздела ЕстествознаниеСуществует множество точек зрения на способы классификации этапов развития естественных наук. Представляется, что в качестве основного критерия следует рассматривать доминирующий среди естествоиспытателей подход к построению их теорий. При этом ... Природа жизни и ее происхождение занимают одно из центральных мест в биологической проблематике. Концепция креационизма, т. е. божественного сотворения всего живого, не может быть рассмотрена в рамках концепций естествознания, так как не существует ... В настоящее время общеизвестно кризисное состояние взаимоотношений между человеческим сообществом и биосферой. Следствием этого состояния являются такие взаимно противоречащие глобальные проблемы человечества, как загрязнение окружающей среды и ... Задолго до появление классического естествознания, в рамках античной натурфилософии сформировалось два подхода к описанию явлений природы: корпускулярный и континуальный. Согласно корпускулярной концепции (самый известный сторонник этой концепции — ... Понятие периодического события может быть раскрыто через категории «ритм» и «цикл». Ритм — это равномерное чередование каких-либо элементов. Цикл — это совокупность явлений и процессов, составляющих кругооборот в течение некоторого промежутка ... Все виды гомеостаза, наблюдаемого в живых организмах и экосистемах, не являются статическими, а достигаются за счет непрерывно протекающих процессов, активно препятствующих любой тенденции к нарушению этого постоянства. Средообразующие функции ... Объединение молекул в микроскопические структуры обычно называют микроскопическими телами. К таким надмолекулярным структурам можно отнести клетку живого организма и ее составные части: ядро, хромосому и т. п. Размеры и масса молекул изменяются в ... Объединение молекул в микроскопические структуры обычно называют микроскопическими телами. К таким надмолекулярным структурам можно отнести клетку живого организма и ее составные части: ядро, хромосому и т. п. Размеры и масса молекул изменяются в ... Задача естественных наук — физики, химии, биологии и других — получение объективных знаний о реальности. Поэтому естествознание стремится к максимально адекватному описанию окружающего мира. Основные утверждения в естественных науках формулируются в ... В физике в конце XIX в. господствовало представление, что существует два вида материи: неделимые частички, или атомы, которые обладают массой покоя, и электромагнитное поле, которое четко не локализовано в пространстве, но которое является ... Разработанная А. Эйнштейном ранее специальная теория относительности применима для расчета временных и пространственных характеристик объектов, которые находятся в инерциалъных системах отсчета, т. е. двигаются равномерно. Так, первый постулат ... До второй половины XIX в. полагали, что неорганические и органические вещества имеют разную природу. Считалось, что органические вещества (сложные соединения, построенные на основе атомов углерода) могут образовываться лишь в результате ... |
|